跳转到内容
开关侧边栏
俄罗斯方块中文维基
搜索
个人工具
创建账号
登录
导航
首页
最近更改
随机页面
MediaWiki帮助
维基建设
编写规范
图片使用规范
搬运指南
Tet文件前缀
术语对照表
常用技巧
特殊旋转
T 旋
全消
主流方块
Techmino
TETR.IO
Jstris
俄罗斯方块效应:连接
噗哟噗哟俄罗斯方块
俄罗斯方块在线
俄罗斯方块特级大师3
Tetr.js
常用列表
官方游戏列表
非官方游戏列表
公司列表
工具
链入页面
相关更改
特殊页面
页面信息
查看“Coon-Dragon”的源代码
页面
讨论
大陆简体
阅读
查看源代码
查看历史
更多
阅读
查看源代码
查看历史
←
Coon-Dragon
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{HD搬运|Coon-Dragon}} '''Coon-Dragon''' (又称 '''Dragon-Coon''')是由 Agent RO 发明的 TSD 后接 TSD 的定式。 该定式形似缅因猫(Maine Coon),同时是[[龙特别型]]的变体,因此得名。 首包块序满足 L>I>Z 时,可考虑使用该定式。 == 第一包 == {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | |S| | | }} {{pfrow| |J| | | | |S|S| | }} {{pfrow|L|J|J|J| | | |S|O|O}} {{pfrow|L|I|I|I|I| |Z|Z|O|O}} {{pfrow|L|L| | | | | |Z|Z| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | |S| | | }} {{pfrow| |J| | | | |S|S| | }} {{pfrow|L|J|J|J|P|P|P|S|O|O}} {{pfrow|L|I|I|I|I|P|Z|Z|O|O}} {{pfrow|L|L| | | | | |Z|Z| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | |S| | | }} {{pfrow| |J| | | | |S|S| | }} {{pfrow|L|L| | | | | |Z|Z| }} {{pfend}} |} == 第二包及后续 == 若按以下方式堆叠,则有机会达成全清、T-Spin Double 或 T-Spin Triple。 其中,全清率为 80.36%。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | |Z}} {{pfrow| | | | | | | | |Z|Z}} {{pfrow|J|J| | | | | |S|Z|I}} {{pfrow|J| | | |L|L|G|S|S|I}} {{pfrow|J|G| |O|O|L|G|G|S|I}} {{pfrow|G|G| |O|O|L| |G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | |I}} {{pfrow| | | | | | | | |Z|I}} {{pfrow|J|J| | | | | |Z|Z|I}} {{pfrow|J| | | |L|L|G|Z|S|I}} {{pfrow|J|G| |O|O|L|G|G|S|S}} {{pfrow|G|G| |O|O|L| |G|G|S}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | |I}} {{pfrow| | | | | | | | |Z|I}} {{pfrow|J|J| | | | | |Z|Z|I}} {{pfrow|J|P|P|P|L|L|G|Z|S|I}} {{pfrow|J|G|P|O|O|L|G|G|S|S}} {{pfrow|G|G| |O|O|L| |G|G|S}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | |I}} {{pfrow| | | | | | | | |Z|I}} {{pfrow|J|J| | | | | |Z|Z|I}} {{pfrow|G|G| |O|O|L| |G|G|S}} {{pfend}} |} {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|J|J|S|S|T|T|T|G}} {{pfrow|O|O|J|S|S|L|L|T|G|G}} {{pfrow|G|G|I|I|I|I|L|G|G|G}} {{pfrow|G|G|J|G|G|G|L|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|L|L|L|I|I|I|I|G}} {{pfrow|O|O|L|Z|J|T|T|T|G|G}} {{pfrow|G|G|Z|Z|J|J|J|G|G|G}} {{pfrow|G|G|Z|G|G|G|T|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|I|L|J|J|J|S|S|G}} {{pfrow|O|O|I|L|Z|Z|S|S|G|G}} {{pfrow|G|G|I|L|L|Z|Z|G|G|G}} {{pfrow|G|G|I|G|G|G|J|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|I|Z|Z|L|L|S|S|G}} {{pfrow|O|O|I|J|Z|Z|S|S|G|G}} {{pfrow|G|G|I|J|J|J|L|G|G|G}} {{pfrow|G|G|I|G|G|G|L|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|I|J|S|S|T|T|T|G}} {{pfrow|O|O|I|S|S|L|L|T|G|G}} {{pfrow|G|G|I|J|J|J|L|G|G|G}} {{pfrow|G|G|I|G|G|G|L|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|J|I|I|I|I|L|L|S|S|G}} {{pfrow|J|J|J|Z|O|O|S|S|G|G}} {{pfrow|G|G|Z|Z|O|O|L|G|G|G}} {{pfrow|G|G|Z|G|G|G|L|G|G|G}} {{pfend}} |} T2 或 T3 的方法如下所示: * O > I {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|I| | | | | | | | | }} {{pfrow|I| | | | | | | | | }} {{pfrow|I| | | | | | | | |Z}} {{pfrow|I| | | | | |L|L|Z|Z}} {{pfrow|O|O| | | | | |L|Z|G}} {{pfrow|O|O|J|J|S|S| |L|G|G}} {{pfrow|G|G|J|S|S| | |G|G|G}} {{pfrow|G|G|J|G|G|G| |G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|I| | | | | | | | | }} {{pfrow|I| | | | | | | | | }} {{pfrow|I| | | | | | | | |Z}} {{pfrow|I| | | | | |L|L|Z|Z}} {{pfrow|O|O| | | | | |L|Z|G}} {{pfrow|O|O|J|J|S|S|P|L|G|G}} {{pfrow|G|G|J|S|S|P|P|G|G|G}} {{pfrow|G|G|J|G|G|G|P|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow|I| | | | | | | | | }} {{pfrow|I| | | | | | | | | }} {{pfrow|I| | | | | | | | |Z}} {{pfrow|I| | | | | |L|L|Z|Z}} {{pfrow|O|O| | | | | |L|Z|G}} {{pfend}} |} * I > O {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O| | | | | | | | }} {{pfrow|O|O| | | | | | | | }} {{pfrow|I| | | | | | | | |Z}} {{pfrow|I| | | | | |L|L|Z|Z}} {{pfrow|I| | | | | | |L|Z|G}} {{pfrow|I| |J|J|S|S| |L|G|G}} {{pfrow|G|G|J|S|S| | |G|G|G}} {{pfrow|G|G|J|G|G|G| |G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O| | | | | | | | }} {{pfrow|O|O| | | | | | | | }} {{pfrow|I| | | | | | | | |Z}} {{pfrow|I| | | | | |L|L|Z|Z}} {{pfrow|I| | | | | | |L|Z|G}} {{pfrow|I| |J|J|S|S|P|L|G|G}} {{pfrow|G|G|J|S|S|P|P|G|G|G}} {{pfrow|G|G|J|G|G|G|P|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow|O|O| | | | | | | | }} {{pfrow|O|O| | | | | | | | }} {{pfrow|I| | | | | | | | |Z}} {{pfrow|I| | | | | |L|L|Z|Z}} {{pfrow|I| | | | | | |L|Z|G}} {{pfrow|I| |J|J|S|S|T|L|G|G}} {{pfend}} |} T3 后续还可接 T2(两种方法,其中方法一可接 [[LST 堆叠]])。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | |I}} {{pfrow| |L| | | | | | | |I}} {{pfrow|G|L| | | | | | | |I}} {{pfrow|G|L|L| | | |Z|O|O|I}} {{pfrow|G|S|P|P|P|Z|Z|O|O|G}} {{pfrow|G|S|S|P|J|Z|G|G|G|G}} {{pfrow|G|G|S| |J|J|J|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | |I}} {{pfrow| |S| | | | | | | |I}} {{pfrow|G|S|S| | | | | | |I}} {{pfrow|G|L|S| | | |Z|O|O|I}} {{pfrow|G|L|P|P|P|Z|Z|O|O|G}} {{pfrow|G|L|L|P|J|Z|G|G|G|G}} {{pfrow|G|G| | |J|J|J|G|G|G}} {{pfend}} |} 如果下一包 L 比 ZJ 两块都早来,则 T2 可接 T3。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | |I| |S| }} {{pfrow|G|G| | | | |I| |S|S}} {{pfrow|G|G| | |J|J|I|O|O|S}} {{pfrow|G| | | |J|L|I|O|O|G}} {{pfrow|G|P|Z|Z|J|L|G|G|G|G}} {{pfrow|G|P|P|Z|Z|L|L|G|G|G}} {{pfrow|G|P|G|G|G|G|G|G|G|G}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | |I| |O|O}} {{pfrow|G|G| | | | |I| |O|O}} {{pfrow|G|G| | |J|J|I| |S|S}} {{pfrow|G| | | |J|L|I|S|S|G}} {{pfrow|G|P|Z|Z|J|L|G|G|G|G}} {{pfrow|G|P|P|Z|Z|L|L|G|G|G}} {{pfrow|G|P|G|G|G|G|G|G|G|G}} {{pfend}} |} 若 Z 比 S 早来,则需采取以下妥协方式。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | |I| | | }} {{pfrow| | | | | | |I| | | }} {{pfrow| | | | | | |I| |S| }} {{pfrow|J|J| | | | |I| |S|S}} {{pfrow|J| | | |L|L|G|Z|Z|S}} {{pfrow|J|G| |O|O|L|G|G|Z|Z}} {{pfrow|G|G| |O|O|L| |G|G| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | |I| | | }} {{pfrow| | | | | | |I| | | }} {{pfrow| | | | | | |I| |S| }} {{pfrow|J|J| | | | |I| |S|S}} {{pfrow|J|P|P|P|L|L|G|Z|Z|S}} {{pfrow|J|G|P|O|O|L|G|G|Z|Z}} {{pfrow|G|G| |O|O|L| |G|G| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | |I| | | }} {{pfrow| | | | | | |I| | | }} {{pfrow| | | | | | |I| |S| }} {{pfrow|J|J| | | | |I| |S|S}} {{pfrow|G|G| |O|O|L| |G|G| }} {{pfend}} |} [[Category:T 旋方法]] [[Category:T2开幕定式]]
该页面使用的模板:
模板:FA
(
查看源代码
)
模板:HD搬运
(
查看源代码
)
模板:Mbox
(
查看源代码
)
模板:Pfend
(
查看源代码
)
模板:Pfrow
(
查看源代码
)
模板:Pfstart
(
查看源代码
)
返回
Coon-Dragon
。