跳转到内容
开关侧边栏
俄罗斯方块中文维基
搜索
个人工具
创建账号
登录
导航
首页
最近更改
随机页面
MediaWiki帮助
维基建设
编写规范
图片使用规范
搬运指南
Tet文件前缀
术语对照表
常用技巧
特殊旋转
T 旋
全消
主流方块
Techmino
TETR.IO
Jstris
俄罗斯方块效应:连接
噗哟噗哟俄罗斯方块
俄罗斯方块在线
俄罗斯方块特级大师3
Tetr.js
常用列表
官方游戏列表
非官方游戏列表
公司列表
工具
链入页面
相关更改
特殊页面
页面信息
查看“红茶炮”的源代码
页面
讨论
大陆简体
阅读
查看源代码
查看历史
更多
阅读
查看源代码
查看历史
←
红茶炮
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{HD搬运|Black Tea Cannon}} '''红茶炮'''(英文 '''Black Tea Cannon''')是一个 T2 开局定式,通常能够以不错的概率在第二个 T2 后达成 PC。它的第一包需要 I 方块早来,以及 O 方块和 L / J 方块的相对早来。然而这种序列下 [[TKI 3 Opening|TKI-3开局]] 是更常被选择的定式。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| |O|O| | | | | | | }} {{pfrow| |O|O| | | | | | |L}} {{pfrow|I|I|I|I| | | |L|L|L}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|J|J| | | | | |S| | }} {{pfrow|J|O|O| | | | |S|S| }} {{pfrow|J|O|O|Z|Z| | | |S|L}} {{pfrow|I|I|I|I|Z|Z| |L|L|L}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|J|J| | | | | |S| | }} {{pfrow|J|O|O| | | | |S|S| }} {{pfrow|J|O|O|Z|Z|P|P|P|S|L}} {{pfrow|I|I|I|I|Z|Z|P|L|L|L}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow|J|J| | | | | |S| | }} {{pfrow|J|O|O| | | | |S|S| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow|G|G| | | | | |G| | }} {{pfrow|G|G|G| | | | |G|G| }} {{pfend}} |} == 6行PC == 第二包能够在堆叠成以下形状时得到一个 T2 或者 T1,并且有概率在总共消除 6 行后达成 PC。通常,PC 的最终解都是第三包中第一个或者第二个到来的 O / I 方块。如果图谱中有方块被分隔成了两个部分,那代表那些方块必须在 T 旋消行之后被放置。如果图谱中方块的数量小于 7 个,那说明需要暂存不在图中的那块方块,以作为与第三包前两个方块一起的潜在解。注意第四列图谱中底部的 I 方块能够在放置了 Z 方块的情况下旋进去,镜像场地则无法做到这样的 I 旋。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|J|J|Z| | |L|L|I}} {{pfrow|O|O|J|Z|Z|T|T|T|L|I}} {{pfrow|G|G|J|Z|S|S|T|G|L|I}} {{pfrow|G|G|G|S|S| | |G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|J|J|J| | |L|L|I}} {{pfrow|O|O|S|Z|Z|T|T|T|L|I}} {{pfrow|G|G|S|S|Z|Z|T|G|L|I}} {{pfrow|G|G|G|S|J| | |G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|L|I|I|I|I|J|J|J}} {{pfrow|O|O|L| | |T|T|T|S|J}} {{pfrow|G|G|L|L|Z|Z|T|G|S|S}} {{pfrow|G|G|G| | |Z|Z|G|G|S}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|L| | | | |J|J|J}} {{pfrow|O|O|L|Z|Z|T|T|T|S|J}} {{pfrow|G|G|L|L|Z|Z|T|G|S|S}} {{pfrow|G|G|G|I|I|I|I|G|G|S}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|L|I|I|I|I|J|J|J}} {{pfrow|O|O|L|Z|Z|T|T|T|S|J}} {{pfrow|G|G|L|L|Z|Z|T|G|S|S}} {{pfrow|G|G|G| | | | |G|G|S}} {{pfend}} |} {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | |Z|O|O|L|L|I}} {{pfrow|J|J|J|Z|Z|T|T|T|L|I}} {{pfrow|G|G|J|Z|S|S|T|G|L|I}} {{pfrow|G|G|G|S|S|O|O|G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O| | | | | |L|L|I}} {{pfrow|O|O|S|Z|Z|T|T|T|L|I}} {{pfrow|G|G|S|S|Z|Z|T|G|L|I}} {{pfrow|G|G|G|S| | | |G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|L| | | |T|J|J|J}} {{pfrow|O|O|L| | | |T|T|S|J}} {{pfrow|G|G|L|L|Z|Z|T|G|S|S}} {{pfrow|G|G|G| | |Z|Z|G|G|S}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O|L| | | |T|J|J|J}} {{pfrow|O|O|L|Z|Z| |T|T|S|J}} {{pfrow|G|G|L|L|Z|Z|T|G|S|S}} {{pfrow|G|G|G|I|I|I|I|G|G|S}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | |L|O|O|J|J|J}} {{pfrow|I|I|I|I|L|T|T|T|S|J}} {{pfrow|G|G|Z|Z|L|L|T|G|S|S}} {{pfrow|G|G|G|Z|Z|O|O|G|G|S}} {{pfend}} |} 如果第一包中的 O 方块来得较晚, 但是第一块 L / J 方块又已经放置,玩家可以转而使用如下的搭法。这样可以以高成功率搭成第六张图谱中的形状并打出 T2 ,但是达成 PC 的概率则没那么高 —— 第三包中 O 方块必须在序列的前两个方块到来。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | |Z|Z| | | | |L}} {{pfrow|I|I|I|I|Z|Z| |L|L|L}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | |S| | }} {{pfrow|J| | | | | | |S|S| }} {{pfrow|J|J|J|Z|Z|T|T|T|S|L}} {{pfrow|I|I|I|I|Z|Z|T|L|L|L}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | |S| | }} {{pfrow|J| | | | | | |S|S| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | |O|O|S| | }} {{pfrow|J| | | | |O|O|S|S| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | |G|G|G| | }} {{pfrow|G| | | | |G|G|G|G| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|J|J|J| | |Z|Z|L|L|I}} {{pfrow|O|O|J|P|P|P|Z|Z|L|I}} {{pfrow|O|O|S|S|P|G|G|G|L|I}} {{pfrow|G|S|S| | |G|G|G|G|I}} {{pfend}} |} == 8行PC == 如果第二包中的 I 方块来得早,那么可以堆叠成如下图的形状,并在总共消除8行后得到 PC。只要没有垃圾行的阻断,后续 PC 能够在看 5 NEXT 的条件下通过适当的堆叠以 100% 的概率达成,无论第三包的序列为何。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow|J|J| | | | | |S| | }} {{pfrow|J|O|O| | | | |S|S| }} {{pfrow|J|O|O|Z|Z|P|P|P|S|L}} {{pfrow|I|I|I|I|Z|Z|P|L|L|L}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow|J|J| | | | | |S| | }} {{pfrow|J|O|O| | | | |S|S| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow|G|G| | | | | |G| | }} {{pfrow|G|G|G| | | | |G|G| }} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |O|O}} {{pfrow| | | | | | | | |O|O}} {{pfrow|J| | | | | | |L|L|I}} {{pfrow|J|J|J|S|S|P|P|P|L|I}} {{pfrow|G|G|S|S|Z|Z|P|G|L|I}} {{pfrow|G|G|G| | |Z|Z|G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |O|O}} {{pfrow| | | | | | | | |O|O}} {{pfrow|J| | | | | | |L|L|I}} {{pfrow|G|G|G| | |Z|Z|G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |G|G}} {{pfrow| | | | | | | | |G|G}} {{pfrow|G| | | | | | |G|G|G}} {{pfrow|G|G|G| | |G|G|G|G|G}} {{pfend}} |} 注意,在 SRS 旋转的帮助下, L 方块可以在 O 方块已放置的情况下旋转插入,而 Z 方块能在 S 方块后放置,S 方块能在 J 和 Z 方块 后放置。所以,只要 I 方块在 O 和 T 方块后到来,这一包的形状都能在软降的帮助下堆叠出来。(概率 66.67%){{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |O|O}} {{pfrow| | | | | | | | |O|O}} {{pfrow|J| | | | | | | | |I}} {{pfrow|J|J|J|S|S| | | | |I}} {{pfrow|G|G|S|S|Z|Z| |G| |I}} {{pfrow|G|G|G| | |Z|Z|G|G|I}} {{pfend}} {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |O|O}} {{pfrow| | | | | | | | |O|O}} {{pfrow|J| | | | | | |'L|'L|I}} {{pfrow|J|J|J|S|S| | | |'L|I}} {{pfrow|G|G|S|S|Z|Z| |G|'L|I}} {{pfrow|G|G|G| | |Z|Z|G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |O|O}} {{pfrow| | | | | | | | |O|O}} {{pfrow|J| | | | | | |L|L|I}} {{pfrow|J|J|J|S|S| | | |L|I}} {{pfrow|G|G|S|S| | | |G|L|I}} {{pfrow|G|G|G| | | | |G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |O|O}} {{pfrow| | | | | | | | |O|O}} {{pfrow|J| | | | | | |L|L|I}} {{pfrow|J|J|J|S|S| | | |L|I}} {{pfrow|G|G|S|S|'Z|'Z| |G|L|I}} {{pfrow|G|G|G| | |'Z|'Z|G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |O|O}} {{pfrow| | | | | | | | |O|O}} {{pfrow|J| | | | | | |L|L|I}} {{pfrow|J|J|J| | | | | |L|I}} {{pfrow|G|G| | |Z|Z| |G|L|I}} {{pfrow|G|G|G| | |Z|Z|G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |O|O}} {{pfrow| | | | | | | | |O|O}} {{pfrow|J| | | | | | |L|L|I}} {{pfrow|J|J|J|'S|'S| | | |L|I}} {{pfrow|G|G|'S|'S|Z|Z| |G|L|I}} {{pfrow|G|G|G| | |Z|Z|G|G|I}} {{pfend}} |} 在第二包后剩下的堆叠结构是对称的,这使得记忆后续的 PC 解法相对简单。然而玩家会更偏向于记忆第三包的第一块方块该如何放置,因为这决定了后续的序列该怎么 PC。(一块方块会被暂存,这也代表可以通过接续 DPC 来达到五包全消) 通过预读序列的前 4 块方块,其中的 3 块能够以下图中的方法放置,这些情况包含了所有 PC 情况 的 '''86.9%'''。其中用到的方块被作为了分类的依据。 * '''T 方块''': {| style="margin-left:20px;" |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | | |G|G}} {{srow|Z|Z|L|L| |T| | |G|G}} {{srow|G|Z|Z|L|T|T|T|G|G|G}} {{srow|G|G|G|L| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | | |G|G}} {{srow| | |T| |J|J|S|S|G|G}} {{srow|G|T|T|T|J|S|S|G|G|G}} {{srow|G|G|G| |J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | | | | |G|G}} {{srow|S|S| | | |O|O| |G|G}} {{srow|G|S|T|T|T|O|O|G|G|G}} {{srow|G|G|G|T| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | |Z|G|G}} {{srow| |O|O| | | |Z|Z|G|G}} {{srow|G|O|O|T|T|T|Z|G|G|G}} {{srow|G|G|G| |T|G|G|G|G|G}} {{pfend}} |} * '''I 方块:''' {| style="margin-left:20px;" |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S|L|L|I| | | | |G|G}} {{srow|S|S|L|I| | | | |G|G}} {{srow|G|S|L|I| | | |G|G|G}} {{srow|G|G|G|I| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | |I|J|J|Z|G|G}} {{srow| | | | |I|J|Z|Z|G|G}} {{srow|G| | | |I|J|Z|G|G|G}} {{srow|G|G|G| |I|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|J| | | | | | | |G|G}} {{srow|J|J|J|L|I|I|I|I|G|G}} {{srow|G| | |L| | | |G|G|G}} {{srow|G|G|G|L|L|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | |L|G|G}} {{srow|I|I|I|I|J|L|L|L|G|G}} {{srow|G| | | |J| | |G|G|G}} {{srow|G|G|G|J|J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | | |G|G}} {{srow|Z|Z| | |S|S| | |G|G}} {{srow|G|Z|Z|I|I|I|I|G|G|G}} {{srow|G|G|G|S|S|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | | |G|G}} {{srow| | |Z|Z| | |S|S|G|G}} {{srow|G|I|I|I|I|S|S|G|G|G}} {{srow|G|G|G|Z|Z|G|G|G|G|G}} {{pfend}} |} * '''O 方块''': {| style="margin-left:20px;" |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | | | |Z|G|G}} {{srow|S|S| | | | |Z|Z|G|G}} {{srow|G|S| |O|O| |Z|G|G|G}} {{srow|G|G|G|O|O|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | | | | |G|G}} {{srow|S|S|O|O|J| | | |G|G}} {{srow|G|S|O|O|J| | |G|G|G}} {{srow|G|G|G|J|J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | |Z|G|G}} {{srow| | | |L|O|O|Z|Z|G|G}} {{srow|G| | |L|O|O|Z|G|G|G}} {{srow|G|G|G|L|L|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|O|O|J| | | | |Z|G|G}} {{srow|O|O|J| | | |Z|Z|G|G}} {{srow|G|J|J| | | |Z|G|G|G}} {{srow|G|G|G| | |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | |L|O|O|G|G}} {{srow|S|S| | | |L|O|O|G|G}} {{srow|G|S| | | |L|L|G|G|G}} {{srow|G|G|G| | |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | | | | |G|G}} {{srow|S|S| | | |O|O| |G|G}} {{srow|G|S|T|T|T|O|O|G|G|G}} {{srow|G|G|G|T| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | |Z|G|G}} {{srow| |O|O| | | |Z|Z|G|G}} {{srow|G|O|O|T|T|T|Z|G|G|G}} {{srow|G|G|G| |T|G|G|G|G|G}} {{pfend}} |} * '''L & J 方块''': {| style="margin-left:20px;" |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | |L| | |G|G}} {{srow|S|S| | | |L| | |G|G}} {{srow|G|S|J|J|J|L|L|G|G|G}} {{srow|G|G|G| |J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | |J| | | | |Z|G|G}} {{srow| | |J| | | |Z|Z|G|G}} {{srow|G|J|J|L|L|L|Z|G|G|G}} {{srow|G|G|G|L| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|J| | | | | | | |G|G}} {{srow|J|J|J|L|I|I|I|I|G|G}} {{srow|G| | |L| | | |G|G|G}} {{srow|G|G|G|L|L|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | |L|G|G}} {{srow|I|I|I|I|J|L|L|L|G|G}} {{srow|G| | | |J| | |G|G|G}} {{srow|G|G|G|J|J|G|G|G|G|G}} {{pfend}} |} * '''S & Z 方块''': {| style="margin-left:20px;" |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | | | |Z|G|G}} {{srow|S|S| | | | |Z|Z|G|G}} {{srow|G|S| |O|O| |Z|G|G|G}} {{srow|G|G|G|O|O|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S|L|L| | | | |Z|G|G}} {{srow|S|S|L| | | |Z|Z|G|G}} {{srow|G|S|L| | | |Z|G|G|G}} {{srow|G|G|G| | |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | |J|J|Z|G|G}} {{srow|S|S| | | |J|Z|Z|G|G}} {{srow|G|S| | | |J|Z|G|G|G}} {{srow|G|G|G| | |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | |Z|G|G}} {{srow| | | |L|L|L|Z|Z|G|G}} {{srow|G| | |L|S|S|Z|G|G|G}} {{srow|G|G|G|S|S|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | | | | |G|G}} {{srow|S|S|J|J|J| | | |G|G}} {{srow|G|S|Z|Z|J| | |G|G|G}} {{srow|G|G|G|Z|Z|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | | |G|G}} {{srow|Z|Z| | |S|S| | |G|G}} {{srow|G|Z|Z|I|I|I|I|G|G|G}} {{srow|G|G|G|S|S|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | | |G|G}} {{srow| | |Z|Z| | |S|S|G|G}} {{srow|G|I|I|I|I|S|S|G|G|G}} {{srow|G|G|G|Z|Z|G|G|G|G|G}} {{pfend}} |} 通过预读序列中第三包的前 5 块,其中的 4 块能够被堆叠成上文图谱或者以下的情况,占所有情况的 '''99.5%''',几乎确保了后续的 PC 能够被达成。 {| |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | |L|L|L| | |G|G}} {{srow|T|T|T|L|I|I|I|I|G|G}} {{srow|G|T| |O|O| | |G|G|G}} {{srow|G|G|G|O|O|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | |J|J|J| | | |G|G}} {{srow|I|I|I|I|J|T|T|T|G|G}} {{srow|G| | |O|O| |T|G|G|G}} {{srow|G|G|G|O|O|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S|L|L|I| | | | |G|G}} {{srow|S|S|L|I| |T| | |G|G}} {{srow|G|S|L|I|T|T|T|G|G|G}} {{srow|G|G|G|I| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | |I|J|J|Z|G|G}} {{srow| | |T| |I|J|Z|Z|G|G}} {{srow|G|T|T|T|I|J|Z|G|G|G}} {{srow|G|G|G| |I|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | |L|O|O|G|G}} {{srow|S|S| | | |L|O|O|G|G}} {{srow|G|S|T|T|T|L|L|G|G|G}} {{srow|G|G|G|T| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|O|O|J| | | | |Z|G|G}} {{srow|O|O|J| | | |Z|Z|G|G}} {{srow|G|J|J|T|T|T|Z|G|G|G}} {{srow|G|G|G| |T|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | |O|O|G|G}} {{srow|Z|Z|L|L| |T|O|O|G|G}} {{srow|G|Z|Z|L|T|T|T|G|G|G}} {{srow|G|G|G|L| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|O|O| | | | | | |G|G}} {{srow|O|O|T| |J|J|S|S|G|G}} {{srow|G|T|T|T|J|S|S|G|G|G}} {{srow|G|G|G| |J|G|G|G|G|G}} {{pfend}} |} {| |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S|Z|Z| | | | | |G|G}} {{srow|S|S|Z|Z| |O|O| |G|G}} {{srow|G|S|T|T|T|O|O|G|G|G}} {{srow|G|G|G|T| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | |S|S|Z|G|G}} {{srow| |O|O| |S|S|Z|Z|G|G}} {{srow|G|O|O|T|T|T|Z|G|G|G}} {{srow|G|G|G| |T|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | |J|S| | | | |G|G}} {{srow| | |J|S|S|T|T|T|G|G}} {{srow|G|J|J|L|L|L|T|G|G|G}} {{srow|G|G|G|L|S|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | |L| | |G|G}} {{srow|S|S|J|J|J|L| | |G|G}} {{srow|G|S|T|T|T|L|L|G|G|G}} {{srow|G|G|G|T|J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | |Z|L| | |G|G}} {{srow|T|T|T|Z|Z|L| | |G|G}} {{srow|G|T|J|J|J|L|L|G|G|G}} {{srow|G|G|G|Z|J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | |J| | | | |Z|G|G}} {{srow| | |J|L|L|L|Z|Z|G|G}} {{srow|G|J|J|T|T|T|Z|G|G|G}} {{srow|G|G|G|L|T|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | | |L|G|G}} {{srow|Z|Z|T|T|T|L|L|L|G|G}} {{srow|G|Z|Z|T|S|S| |G|G|G}} {{srow|G|G|G|S|S|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|J| | | | | | | |G|G}} {{srow|J|J|J|T|T|T|S|S|G|G}} {{srow|G| |Z|Z|T|S|S|G|G|G}} {{srow|G|G|G|Z|Z|G|G|G|G|G}} {{pfend}} |} {| |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | |L|L|L| | |G|G}} {{srow|J|J|J|L|I|I|I|I|G|G}} {{srow|G| |J|O|O| | |G|G|G}} {{srow|G|G|G|O|O|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | |J|J|J| | | |G|G}} {{srow|I|I|I|I|J|L|L|L|G|G}} {{srow|G| | |O|O|L| |G|G|G}} {{srow|G|G|G|O|O|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | |L|O|O|G|G}} {{srow|I|I|I|I|J|L|O|O|G|G}} {{srow|G| | | |J|L|L|G|G|G}} {{srow|G|G|G|J|J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|O|O|J| | | | | |G|G}} {{srow|O|O|J|L|I|I|I|I|G|G}} {{srow|G|J|J|L| | | |G|G|G}} {{srow|G|G|G|L|L|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S|L|L|I| | |O|O|G|G}} {{srow|S|S|L|I| | |O|O|G|G}} {{srow|G|S|L|I| | | |G|G|G}} {{srow|G|G|G|I| |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|O|O| | |I|J|J|Z|G|G}} {{srow|O|O| | |I|J|Z|Z|G|G}} {{srow|G| | | |I|J|Z|G|G|G}} {{srow|G|G|G| |I|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | | | |O|O|G|G}} {{srow|Z|Z| | |S|S|O|O|G|G}} {{srow|G|Z|Z|I|I|I|I|G|G|G}} {{srow|G|G|G|S|S|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|O|O| | | | | | |G|G}} {{srow|O|O|Z|Z| | |S|S|G|G}} {{srow|G|I|I|I|I|S|S|G|G|G}} {{srow|G|G|G|Z|Z|G|G|G|G|G}} {{pfend}} |} {| |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S|L|L|I| | | | |G|G}} {{srow|S|S|L|I|J|J| | |G|G}} {{srow|G|S|L|I|J| | |G|G|G}} {{srow|G|G|G|I|J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | |L|J|J| | | |G|G}} {{srow|L|L|L|J|I|I|I|I|G|G}} {{srow|G| | |J|S|S| |G|G|G}} {{srow|G|G|G|S|S|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | | |I|J|J|Z|G|G}} {{srow| | |L|L|I|J|Z|Z|G|G}} {{srow|G| | |L|I|J|Z|G|G|G}} {{srow|G|G|G|L|I|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow| | | |L|L|J| | |G|G}} {{srow|I|I|I|I|L|J|J|J|G|G}} {{srow|G| |Z|Z|L| | |G|G|G}} {{srow|G|G|G|Z|Z|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S|L|L|I|I|I|I|Z|G|G}} {{srow|S|S|L| | | |Z|Z|G|G}} {{srow|G|S|L| | | |Z|G|G|G}} {{srow|G|G|G| | |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S|I|I|I|I|J|J|Z|G|G}} {{srow|S|S| | | |J|Z|Z|G|G}} {{srow|G|S| | | |J|Z|G|G|G}} {{srow|G|G|G| | |G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|S| | | | | |O|O|G|G}} {{srow|S|S|L|L|J|J|O|O|G|G}} {{srow|G|S| |L|J| | |G|G|G}} {{srow|G|G|G|L|J|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|O|O| | | | | |Z|G|G}} {{srow|O|O|L|L|J|J|Z|Z|G|G}} {{srow|G| | |L|J| |Z|G|G|G}} {{srow|G|G|G|L|J|G|G|G|G|G}} {{pfend}} |} 剩下的 '''0.5%''' 的情况有这些:S 和 Z 方块都未在序列前 5 块出现,O 方块在第 4 个到来,或者 L / J 方块在第 5 个到来。玩家最好记忆下这些情况,并在 S / Z 方块早来的情况下选择以下四种解。 {| |{{sstart}} {{srow| | | | | | | | | | }} {{srow|Z|Z|J|J|J|L|L|L|G|G}} {{srow|I|I|I|I|J|T|T|T|G|G}} {{srow|G|Z|Z|O|O|L|T|G|G|G}} {{srow|G|G|G|O|O|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|J|J|J|L|L|L|S|S|G|G}} {{srow|T|T|T|L|I|I|I|I|G|G}} {{srow|G|T|J|O|O|S|S|G|G|G}} {{srow|G|G|G|O|O|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|O|O|Z|Z|L|J|S|S|G|G}} {{srow|O|O|L|L|L|J|J|J|G|G}} {{srow|G|I|I|I|I|S|S|G|G|G}} {{srow|G|G|G|Z|Z|G|G|G|G|G}} {{pfend}} |{{sstart}} {{srow| | | | | | | | | | }} {{srow|Z|Z|L|J|S|S|O|O|G|G}} {{srow|L|L|L|J|J|J|O|O|G|G}} {{srow|G|Z|Z|I|I|I|I|G|G|G}} {{srow|G|G|G|S|S|G|G|G|G|G}} {{pfend}} |} 注意因为定式的前两次消行是水平方向上的 T2,每一种接下来的 PC 形状都需要符合: * 如果 T 方块已经放置,那么第二行必须在第一行有奇数个空格的时候被消行,或者第三行必须在第四行有奇数个空格的时候被消行。 * 如果 T 方块被竖直放置,那么 L / J 方块中的一个必须不被放置。由于以上形状中 T 方块都是水平放置的,L 和 J 方块必须被放置来达成 PC。 如果 I 方块在第二包中到来得晚,玩家可以尝试一下的其中一种 PC 基本型。它们中的任何一个都不能 100% PC。 {| |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow|O|O| | | | | | | | }} {{pfrow|O|O| | | | | | | | }} {{pfrow|J| | | | | | |L|L|I}} {{pfrow|J|J|J|S|S|T|T|T|L|I}} {{pfrow|G|G|S|S|Z|Z|T|G|L|I}} {{pfrow|G|G|G| | |Z|Z|G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |J|I}} {{pfrow| | | | | | | | |J|I}} {{pfrow|O|O|L| | | | |J|J|I}} {{pfrow|O|O|L|Z|Z|T|T|T|S|I}} {{pfrow|G|G|L|L|Z|Z|T|G|S|S}} {{pfrow|G|G|G| | | | |G|G|S}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |J|I}} {{pfrow|L| | | | | | | |J|I}} {{pfrow|L| | | | | | |J|J|I}} {{pfrow|L|L|S|Z|Z|T|T|T|O|O}} {{pfrow|G|G|S|S|Z|Z|T|G|O|O}} {{pfrow|G|G|G|S| | | |G|G|I}} {{pfend}} |{{pfstart}} {{pfrow| | | | | | | | | | }} {{pfrow| | | | | | | | |J|I}} {{pfrow| | | | | | | | |J|I}} {{pfrow| | |L| | | | |J|J|I}} {{pfrow|L|L|L|S|S|T|T|T|O|O}} {{pfrow|G|G|S|S|Z|Z|T|G|O|O}} {{pfrow|G|G|G| | |Z|Z|G|G|I}} {{pfend}} |} == 外部链接 == * [https://hse30.tistory.com/204 In-depth article about Black Tea Cannon] [[分类:T 旋方法]] [[分类:T2开幕定式]]
该页面使用的模板:
模板:FA
(
查看源代码
)
模板:HD搬运
(
查看源代码
)
模板:Mbox
(
查看源代码
)
模板:Pfend
(
查看源代码
)
模板:Pfrow
(
查看源代码
)
模板:Pfstart
(
查看源代码
)
模板:Srow
(
查看源代码
)
模板:Sstart
(
查看源代码
)
返回
红茶炮
。